Inflation and Inflation Uncertainty in Iran: An Application of GARCH-in-Mean Model with FIML Method of Estimation

Hassan Heidari*
Sahar Bashiri**

Abstract
This paper investigates the relationship between inflation and inflation uncertainty for the period of 1990-2009 by using monthly data in the Iranian economy. The results of a two-step procedure such as Granger causality test which uses generated variables from the first stage as regressors in the second stage, suggests a positive relation between the mean and the variance of inflation. However, Pagan (1984) criticizes this two-step procedure for its misspecifications due to the use of generated variables from the first stage as regressors in the second stage. This paper uses the Full Information Maximum Likelihood (FIML) method to address this issue. The estimates we gathered with the new set of specifications suggest that inflation causes inflation uncertainty, supporting the Friedman–Ball hypothesis.

Keywords: Inflation Uncertainty, GARCH models, FIML, Iran

JEL Classification: C22, E31

1. Introduction:
The relationship between inflation and inflation uncertainty has been the matter of interest among economists in recent decades. As the impact of inflation and inflation uncertainty on growth and welfare are significant (see e.g. Ma, 1998; Vale, 2005; Fountas & Kraranasos, 2006; Wilson, 2006; Hwang, 2007; Fang, et. Al, 2008), determining the direction of the causality between inflation and inflation uncertainty can help the policy makers to make appropriate decisions. Friedman (1977) points out the potential of increased inflation to crate nominal

* Assistant professor of Economics - Urmia University, Iran
**Research Assistant, Department of Economics - Urmia University, Iran
uncertainty, which adversely affect real economic activity as inflation uncertainty reduces the information content of prices, distorts relative prices, and therefore lowers economic efficiency (welfare and output growth). Ball (1992) formalizes and supports Friedman’s hypothesis in a game theoretical framework. Cukierman and Meltzer (1986) and Cukierman (1992), on the other hand, argue that increases in inflation uncertainty raise the optimal inflation rate by increasing the incentive for the policy maker to create inflation surprises in a game theoretical framework.

On the empirical side of the inflation uncertainty literature, the results are mixed (see e.g. Golob, 1995; Baillie et al., 1996; Crawford and Kasmovich, 1996; Joyce, 1997; Grier and Perry, 1990, 1998, 2000; Davis and Kanago, 2000; Perry and Tevfik, 2000; Fountas, 2001; Fountas, et. al. 2001; Hwang, 2001; Berument and Yuksel, 2002; Fountas, et. al. 2002; Bhar and Hamori, 2004; Kontonikas, 2004; Berument and Nargez Dincer, 2005; Conrad and Karanasos, 2005; Vale, 2005; Artan, 2006; Caporale and Kontonikas, 2006; Grier and Grier, 2006; Thornton, 2007; Heidari and Montakhab, 2008; Heidari and Bashiri, 2009; Jafari Samimi and Motameni 2009; Berument, et al, 2009; Jiranyakul and Opiela, 2010). Heidari and Montakhab (2008); Heidari and Bashiri (2009); and Jafari Samimi and Motameni (2009) investigate the relationship between inflation and inflation uncertainty with Iranian data. Their results are in line with others around world, supporting Friedman’s hypothesis.

Although most of the empirical studies use the GARCH type of specifications as their common method to assess the relationship between inflation and inflation uncertainty, some studies make use of a two-step procedure. For example, with Iranian data Farzinvash and Abbasi (2005); Emami and Salmanpour (2006); Tashkini (2006); Heidari and Montakhab (2008) and Jafari Samimi and Motameni (2009) estimate the conditional variance of inflation, as a measure of inflation uncertainty, by applying GARCH family models, and then perform the Granger causality tests between these generated conditional variance measures and inflation series. However, Pagan (1984) criticises two-step procedure for its misspecifications due to the use of generated variables from the first stage as regressors in the second stage.
This paper examines the relationship between inflation and inflation uncertainty with Iranian data for the period of 1990 to 2009 and FIML method of estimation. The paper contributes to the literature in several respects: First, we employ monthly Iranian data, a country that has experienced significant uncertainty in inflation over the last 40 years. Second this paper estimates inflation uncertainty by assuming that uncertainty is due to the shocks of inflation, and therefore measures inflation uncertainty by using the conditional variance of inflation. In this method, various GARCH models are applied to estimate a time-varying conditional residual variance, as a standard measure of inflation uncertainty. Third the novelty of the paper with Iranian data is that the causality between inflation and inflation uncertainty is tested by using the FIML method of estimation. The estimates with the new set of specification system confirm our results from Granger causality tests, supporting the Friedman-Ball hypothesis.

The rest of the paper is organized as follows: Section 2 introduces the model. Section 3 discusses the data. In section 4, the estimation results are presented and finally, section 5 concludes.

2. The Model

The general GARCH specification, which is used for inflation and time-varying residual variance as a measure of inflation uncertainty, is as follows:

\[\pi_t = \beta_0 + \sum_{i=1}^{n} \beta_i \pi_{t-i} + \varepsilon_t \]
(1)

\[\sigma^2_{\pi} = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \sigma^2_{\varepsilon_{t-1}} \]
(2)

Where \(\pi_t \) is the inflation, \(\varepsilon_t \) is the residual of equation (1), \(\sigma^2_{\pi} \) is the conditional variance of the residual term taken as inflation uncertainty at time \(t \), and \(n \) is the lag length. Equation (1) is an autoregressive representation of inflation, and equation (2) is a GARCH(1,1) representation of conditional variance.
Although most empirical studies with Iranian data, used this general GARCH model to investigate the relationship between inflation and inflation uncertainty, they make use of a two-stage procedure.\(^1\) For example, Jafari Samimi and Motamemi (2009) estimate the conditional variance of inflation by GARCH(1,1) and Exponential GARCH (EGARCH) models in the first step, and then perform the Granger causality tests between these generated conditional variance and inflation in the second step. However, Pagan (1984) criticises this two-step procedure and Pagan and Ullah (1988) suggest using the FIML method of estimation to address the misspecifications of using two-step procedure. As Berument and Nargariz Dincer (2005) mentions, if the inflation affects the inflation uncertainty, and the inflation uncertainty affects the inflation, then the inflation variable and the inflation uncertainty needs to include in the inflation uncertainty (variance equation) and inflation (mean equation) specifications, respectively. Thus the alternative specification for the equations (1) and (2) are:

\[
\pi_t = \beta_0 + \sum_{i=1}^{n} \beta_i \pi_{t-i} + \lambda \sigma_{\pi}^2 + \varepsilon_t
\]

\[
\sigma_{\pi}^2 = \alpha_0 + \alpha_1 \sigma_{\pi-1}^2 + \rho \pi_{t-1}
\]

Following Pagan and Ullah (1988) we estimate equations (3) and (4) jointly using the FIML method of estimation. In this model the value of \(\rho > 0\) shows that inflation uncertainty increases as inflation rises. Hence a positive and significant \(\rho\) can be considered as confirmation of Friedman-Ball hypothesis and also means that inflation uncertainty is a cost of inflation. However, \(\lambda\) in the mean equation could be positive or negative. A positive \(\lambda\) means that inflation uncertainty has a positive effect on the level of inflation, but a negative \(\lambda\) means that inflation uncertainty has a negative impact on the level of inflation which can be explained by the stabilization motive of policy makers.

\(^1\) Heidari, et. Al. (Forthcoming). Employs a Quesi Maximum Likelihood
3. Data

The paper uses monthly Consumer Price Index (CPI) inflation, taken from the Central Bank of Iran for the period of 1990–2009. Inflation is the annualized monthly difference of the log of the CPI: (see, e.g. Asteriou, 2006).

\[\pi_t = (\ln cpi_t - \ln cpi_{t-1}) \times 1200 \]

Figure (1) shows the inflation rate in the Iranian economy during 1990-2009.

![Figure 1. Inflation Rate in the Iranian Economy](image)

As Figure 1 shows the Iranian economy has experienced high and volatile inflation rate during last two decades.

The summary statistics for the data is given in Table (1). The large value of the Jargue-Bera statistic implies a deviation from normality.

<table>
<thead>
<tr>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Minimum</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Jargue-Bera</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.7015</td>
<td>15.4840</td>
<td>89.4030</td>
<td>-24.7431</td>
<td>16.6848</td>
<td>1.21719</td>
<td>6.13495</td>
<td>150.3212</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
3.1 Unit Root Test:

In order to investigate the stationarity of the data, the paper uses the Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests. Table (2) shows the ADF, PP and KPSS tests results for the Iranian inflation.

Table 2. ADF, PP and KPSS tests results for the Iranian inflation

<table>
<thead>
<tr>
<th>Include in test equation</th>
<th>Statistic</th>
<th>Critical values 10% level</th>
<th>Critical values 5% level</th>
<th>Critical values 1% level</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Intercept</td>
<td>-9.733669***</td>
<td>-2.573502</td>
<td>-2.874029</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>-2.763497</td>
<td>-1.615725</td>
<td>-1.942296</td>
</tr>
<tr>
<td></td>
<td>trend and intercept</td>
<td>-9.955510***</td>
<td>-3.138345</td>
<td>-3.429657</td>
</tr>
<tr>
<td></td>
<td>none</td>
<td>-5.686860***</td>
<td>-1.615772</td>
<td>-1.942224</td>
</tr>
<tr>
<td>KPSS</td>
<td>Intercept</td>
<td>0.512000**</td>
<td>0.347000</td>
<td>0.463000</td>
</tr>
<tr>
<td></td>
<td>trend and intercept</td>
<td>0.131385*</td>
<td>0.119000</td>
<td>0.146000</td>
</tr>
</tbody>
</table>

Note: * denotes significance at the 10% level, ** denotes significance at the 10%, 5% level *** denotes significance at the 10%, 5%, 1% level.

As can be seen from Table (2), the inflation rate is stationary.

3.2 Test of Structural Breaks in the Mean of Iranian Inflation:

To carry out a test of no structural break against an unknown number of breaks in the Iranian inflation, this paper uses the endogenously determined multiple break test developed by Bai and Perron (1998). This method tests for the presence of breaks when neither the number nor the timing of breaks is known apriori. This approach allows us to test for the presence of \(m \) breaks in the mean of inflation rate at unknown times using the following model:

\[
\pi_t = \mu_j + \eta_t, \quad t = T_{j-1} + 1, \ldots, T_j, \quad j = 1,2,\ldots,(m+1)
\]
Where \(\pi_t \) is the inflation, \(\mu_j \) is the regime-specific mean inflation rate, and \(\eta_t \) is an error term, and \(T_0 = 0 \) and \(T_{m+1} = T \).

Bai and Perron (1998) introduced two tests of the null hypothesis of no structural break against an unknown number of breaks given some upper bound (for most empirical applications this bound is 5, see, e.g., Bai and Perron, 2003). These tests are called Double Maximum tests \((D_{\text{max}})\). The first is an equal weighted (we set all weights equal to unity) labeled by \(U_{\text{max}} \). The second test, \(W_{\text{max}} \), applies weights to the individual tests such that the marginal \(p \) – values are equal across the values of breaks. In both of these tests, break points are estimated by using the global minimization of the sum of squared residuals (for more details see, Bai and Perron, 1998 and 2003).

<table>
<thead>
<tr>
<th>Tests</th>
<th>(U_{\text{max}})</th>
<th>(W_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>5.6793</td>
<td>5.6793</td>
</tr>
</tbody>
</table>

Table 3. \(U_{\text{max}} \) and \(W_{\text{max}} \) tests results

Table (3) presents results of \(D_{\text{max}} \) tests. These tests show that we have no break in the mean of the Iranian inflation. These results are strongly supported by the \(\text{Sup}F_r(m) \) test introduced by Andrews (1993) and CUSUM test.

Figure (2) shows that the cumulative sum of the recursive residuals is within the five percent significance lines, sugessting of coefficient stablity.
4. Estimates

We find that the best fitting time series model for the Iranian inflation includes 1, 11, 12 of its lages. The results from estimation of this model are as follow: (t-statistics are in parantheses)

\[
\pi_t = \beta_0 + \beta_1 \pi_{t-1} + \beta_{11} \pi_{t-11} + \beta_{12} \pi_{t-12} + \epsilon_t
\]

\[
\pi_t = 5.159789 + 0.326384\pi_{t-1} + 0.149431\pi_{t-11} + 0.242599\pi_{t-12} + \epsilon_t
\]

In order to find out whether the residuals are serially correlated, we use Breush-Godfrey serial correlation Lagrange Multiplier (LM) Test.
Table 4. Breush-Godfrey Serial Correlation LM Test

| LM test | Probability | 0.736441 |

The Table (4) shows that the test does not reject the hypothesis of no serial correlation and so indicate that the residuals are not serially correlated.

Moreover to test whether there are any remaining ARCH effects in the residuals, we use the LM test for ARCH in the residuals (see, e.g. Engle 1982). The results of the ARCH-LM test in Table (5) expresses that the hypothesis of no remaining ARCH effects in the residuals can not be rejected. Thus, there is ARCH effect in the residuals.

Table 5. ARCH LM Test

| LM test | Probability | 0.000022 |

Since higher order ARCH indicates persistence in the conditional variance, the model is estimated as a GARCH(1,1) process. This resultes are reported in Table (6).

Table 6. GARCH(1,1) model estimation results

<table>
<thead>
<tr>
<th>Mean equation</th>
<th>Coefficient</th>
<th>Std.Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>5.810381</td>
<td>1.653598</td>
<td>3.513781</td>
<td>0.0004</td>
</tr>
<tr>
<td>β_1</td>
<td>0.243595</td>
<td>0.065029</td>
<td>3.745943</td>
<td>0.0002</td>
</tr>
<tr>
<td>β_{11}</td>
<td>0.067373</td>
<td>0.037569</td>
<td>1.793334</td>
<td>0.0729</td>
</tr>
<tr>
<td>β_{12}</td>
<td>0.305883</td>
<td>0.040692</td>
<td>7.517105</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance equation</th>
<th>Coefficient</th>
<th>Std.Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>38.29479</td>
<td>15.79927</td>
<td>2.423834</td>
<td>0.0154</td>
</tr>
<tr>
<td>α_1</td>
<td>0.393997</td>
<td>0.109163</td>
<td>3.609259</td>
<td>0.0003</td>
</tr>
<tr>
<td>α_2</td>
<td>0.423619</td>
<td>0.133668</td>
<td>3.169195</td>
<td>0.0015</td>
</tr>
</tbody>
</table>
The results in Table (6) show that in the mean and variance equation, all coefficients are highly significant.

Table (7) reports the result of Granger Causality test between inflation and inflation uncertainty. In fact, in this table we repeated the analysis of two-step procedure which is done in Heidari and Montakhab (2008) and Jafari Samimi and Motameni (2009), among others.

<table>
<thead>
<tr>
<th>Null Hypothesis</th>
<th>F-Statistic</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation does not Granger Cause inflation uncertainty</td>
<td>32.4027</td>
<td>5.4E-13</td>
</tr>
<tr>
<td>Inflation uncertainty does not Granger Cause inflation</td>
<td>1.74102</td>
<td>0.17786</td>
</tr>
</tbody>
</table>

These results suggest that inflation Granger-causes inflation uncertainty, supporting the Friedman–Ball hypothesis, that high inflation is associated with more variable inflation.

The novelty of the paper is setting up a system of equation and estimate the new set of specification using FIML method of estimation. Table (8) presents jointly estimation result of equations (4) and (5) using FIML method. As excluding further lags of inflation and inflation uncertainty measure from the system would lead to biased estimates of parameters, we include further lags of these variables in the system.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>5.036655</td>
<td>2.149435</td>
<td>2.343246</td>
</tr>
<tr>
<td>β_1</td>
<td>0.337726</td>
<td>0.064536</td>
<td>5.233141</td>
</tr>
<tr>
<td>β_{11}</td>
<td>0.158938</td>
<td>0.052911</td>
<td>3.003841</td>
</tr>
<tr>
<td>β_{12}</td>
<td>0.257024</td>
<td>0.052922</td>
<td>4.856672</td>
</tr>
<tr>
<td>λ</td>
<td>-0.003104</td>
<td>0.004618</td>
<td>-0.672138</td>
</tr>
<tr>
<td>α_0</td>
<td>1.851772</td>
<td>26.33859</td>
<td>-0.070306</td>
</tr>
<tr>
<td>α_1</td>
<td>0.687742</td>
<td>0.041315</td>
<td>16.64629</td>
</tr>
<tr>
<td>ρ</td>
<td>3.590882</td>
<td>0.242053</td>
<td>14.83511</td>
</tr>
</tbody>
</table>
Our results of Table (8) express that the coefficient of lagged inflation in
the variance equation \((\rho)\) is positive and highly significant. This
supports the Friedman-Ball hypothesis that inflation increases that
inflation uncertainty, and is in line with Heidari and Montakhab (2008)
and Jafari Samimi and Motameni (2009). However, the coefficient of
conditional variance in the mean equation is insignificant, which means
that inflation uncertainty doesn’t affect the level of inflation. This result
is robust to the different order of lags of inflation uncertainty.

5. Conclusion

This paper investigates the relationship between inflation and
inflation uncertainty for the period of 1990-2009 by using monthly data
and applying GARCH model in the Iranian economy. The paper uses
the Full Information Maximum Likelihood (FIML) method to address
this issue. The estimates we gathered with the new set of specifications
suggest that inflation causes inflation uncertainty, supporting the
Friedman–Ball hypothesis.
References:

